Iskalni niz:
išči po
išči po
išči po
išči po
Vrsta gradiva:
Jezik:
Št. zadetkov: 4
Doktorska disertacija
Oznake: segmentation;deep learning;radiation therapy;computed tomography;magnetic resonance;head and neck cancer;organs-at-risk;
Cancer remains one of the major socioeconomic challenges of modern times. It is among the three leading causes of death globally, accounting for an estimated 9.7 million deaths annually. Over the years, various treatment modalities have been developed, with surgery, chemotherapy, and RT being the mo ...
Leto: 2025 Vir: Fakulteta za elektrotehniko (UL FE)
Izvirni znanstveni članek
Oznake: samodejna razgradnja slik;slikovna podatkovna zbirka;računalniška tomografija;magnetna resonanca;radioterapija;rak glave in vratu;auto-segmentation;image dataset;computed tomography;magnetic resonance;radiation therapy;head and neck cancer;
Purpose: For the cancer in the head and neck (HaN), radiotherapy (RT) represents an important treatment modality. Segmentation of organs-at-risk (OARs) is the starting point of RT planning, however, existing approaches are focused on either computed tomography (CT) or magnetic resonance (MR) images, ...
Leto: 2023 Vir: Fakulteta za elektrotehniko (UL FE)
Izvirni znanstveni članek
Oznake: računski izziv;segmentacija;globoko učenje;kritični organi;računalniška tomografija;magnetna resonanca;radioterapija;rak glave in vratu;computational challenge;segmentation;deep learning;organs-at-risk;computed tomography magnetic resonance;radiotherapy;head and neck cancer;
Background and purpose: To promote the development of auto-segmentation methods for head and neck (HaN) radiation treatment (RT) planning that exploit the information of computed tomography (CT) and magnetic resonance (MR) imaging modalities, we organized HaN-Seg: The Head and Neck Organ-at-Risk CT ...
Leto: 2024 Vir: Fakulteta za elektrotehniko (UL FE)
Izvirni znanstveni članek
Oznake: analiza medicinskih slik;razpoznavanje oslonilnih točk;segmentacija slik;trebušna slinavka;globoko učenje;spodbujevano učenje;medical image analysis;landmark detection;image segmentation;pancreas region;deep learning;reinforcement learning;
AbstractBackground: The pancreas is a complex abdominal organ with many anatom-ical variations, and therefore automated pancreas segmentation from medicalimages is a challenging application.Purpose: In this paper, we present a framework for segmenting individualpancreatic subregions and the pancreat ...
Leto: 2024 Vir: Fakulteta za elektrotehniko (UL FE)
Št. zadetkov: 4
Ključne besede:
Leto izdaje:
Avtorji:
Repozitorij:
Tipologija:
Jezik: